Code No: 155BK

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech III Year I Semester Examinations, August - 2022 FORMAL LANGUAGES AND AUTOMATA THEORY (Common to CSE, IT, ITE)

Time: 3 Hours Max. Marks: 75

Answer any five questions All questions carry equal marks

- Differentiate between NFA and DFA. 1.a)
 - b) Construct DFA for the following language:
 - i) $L=\{w|w \text{ has both an even number of } 0\text{'s and even number of } 1\text{'s } \}$
 - ii) $L = \{w | w \text{ is in the form of 'x01y' for some strings x and y consisting of 0's and 1's} \}$.

[5+10]

- Design a Moore Machine to determine the residue mod 3, where input is treated as 2.a) binary.
 - b) Construct the NFA accepting the following language:
 - i) The set of all strings over $\Sigma = \{a,b\}$ starting with the prefix "ab"
 - ii) The set of all strings over {0,1} except those containing the substring "001". [7+8]
- Construct the NFA for the regular expression r = ((01+10)*00)*. 3.a)
 - b) What are the closure properties of regular languages?
 - State the Pumping Lemma or regular sets. c)

[6+5+4]

- Construct the regular expression for the language over the set $S=\{0,1\}$ 4.a)
 - i) The set of all strings containing no three consecutive 0's.
 - ii) The set of all rings in which the number of occurrences is divisible by 3.
 - Design NFA with epsilon for the RE=(a/b)*ab and convert it into DFA and further find b) the minimized DFA. [6+9]
- What do you mean by ambiguity in grammars and languages? How to eliminated 5.a) ambiguity in grammars? Explain with an example.
 - b) Consider the grammar ($\{S,A,B\},\{a,b\},P,S$) that has the productions:

 $S \rightarrow bA \mid aB$ $A \rightarrow bAA \mid aS \mid a$ $B\rightarrow aBB \mid bS \mid b$.

Find an equivalent grammar in CNF.

[7+8]

6.a) Construct the PDA for the following grammar:

> S→aAA, $A \rightarrow aS \mid bS \mid a$

b) Discuss the applications of Push down Automata. [8+7]

- 7. Explain the importance of Turing Machines and also give descriptions of various types of Turing Machines with necessary examples. [15]
- 8. Discuss briefly about decidability and undecidability problems.

[15]